115 research outputs found

    Social, mobile, analytic and cloud technologies : intelligent computing for future smart cities

    Get PDF
    5311-8814-F0ED | Sara Maria da Cruz Maia de Oliveira PaivaN/

    Authentication Protocol for Cloud Databases Using Blockchain Mechanism

    Get PDF
    Cloud computing has made the software development process fast and flexible but on the other hand it has contributed to increasing security attacks. Employees who manage the data in cloud companies may face insider attack, affecting their reputation. They have the advantage of accessing the user data by interacting with the authentication mechanism. The primary aim of this research paper is to provide a novel secure authentication mechanism by using Blockchain technology for cloud databases. Blockchain makes it difficult to change user login credentials details in the user authentication process by an insider. The insider is not able to access the user authentication data due to the distributed ledger-based authentication scheme. Activity of insider can be traced and cannot be changed. Both insider and outsider user’s are authenticated using individual IDs and signatures. Furthermore, the user access control on the cloud database is also authenticated. The algorithm and theorem of the proposed mechanism have been given to demonstrate the applicability and correctness.The proposed mechanism is tested on the Scyther formal system tool against denial of service, impersonation, offline guessing, and no replay attacks. Scyther results show that the proposed methodology is secure cum robust

    Opportunistic Networks: Present Scenario- A Mirror Review

    Get PDF
    Opportunistic Network is form of Delay Tolerant Network (DTN) and regarded as extension to Mobile Ad Hoc Network. OPPNETS are designed to operate especially in those environments which are surrounded by various issues like- High Error Rate, Intermittent Connectivity, High Delay and no defined route between source to destination node. OPPNETS works on the principle of “Store-and-Forward” mechanism as intermediate nodes perform the task of routing from node to node. The intermediate nodes store the messages in their memory until the suitable node is not located in communication range to transfer the message to the destination. OPPNETs suffer from various issues like High Delay, Energy Efficiency of Nodes, Security, High Error Rate and High Latency. The aim of this research paper is to overview various routing protocols available till date for OPPNETs and classify the protocols in terms of their performance. The paper also gives quick review of various Mobility Models and Simulation tools available for OPPNETs simulation

    Enhancement of security and handling the inconspicuousness in IoT using a simple size extensible blockchain

    Get PDF
    Blockchain technology is increasingly used worldwide to enhance the performance and profit of any environment through its defining characteristics, such as security, auditability, immutability, and inconspicuousness. Owing to these characteristics, the blockchain can be used in various non-financial operations of some domains, such as the Internet of Things (IoT) and distributed computing. However, implementing blockchain technology in IoT is not always a feasible solution because blockchain deployment is costly, it has limited extensibility and provides irregular bandwidth and latency. In this regard, a simple size extensible (SSE) blockchain has been proposed to provide an optimal solution for IoT environments by satisfying the needs of the IoT environment as well as ensuring end-to-end security. The implementation of the proposed blockchain develops an overlay network to obtain a distributed environment where the blockchain is handled by the resources present therein. Two novel algorithms were introduced into the proposed system to minimize the irregularity and latency on one hand, and to maximize the throughput of the system on the other. The shared-time depending agreement algorithm (STD) minimizes the irregularity in the extraction operation and latency. The other, the shared throughput administration algorithm (STA) justifies the overall collection of the transmission load in the network and maintains the performance of the blockchain. The proposed system was applied to smart home IoT appliances to test the performance of the proposed system. The experimental results show that the proposed blockchain system minimizes nearly 70% of the data irregularity, latency, and furthermore, 30% of the blockchain extensibility is maximized as compared to the existing systems

    Bold:Bio-inspired optimized leader election for multiple drones

    Get PDF
    Over the past few years, unmanned aerial vehicles (UAV) or drones have been used for many applications. In certain applications like surveillance and emergency rescue operations, multiple drones work as a network to achieve the target in which any one of the drones will act as the master or coordinator to communicate, monitor, and control other drones. Hence, drones are energy-constrained; there is a need for effective coordination among them in terms of decision making and communication between drones and base stations during these critical situations. This paper focuses on providing an efficient approach for the election of the cluster head dynamically, which heads the other drones in the network. The main objective of the paper is to provide an effective solution to elect the cluster head among multi drones at different periods based on the various physical constraints of drones. The elected cluster head acts as the decision-maker and assigns tasks to other drones. In a case where the cluster head fails, then the next eligible drone is re-elected as the leader. Hence, an optimally distributed solution proposed is called Bio-Inspired Optimized Leader Election for Multiple Drones (BOLD), which is based on two AI-based optimization techniques. The simulation results of BOLD compared with the existing Particle Swarm Optimization-Cluster head election (PSO-C) in terms of network lifetime and energy consumption, and from the results, it has been proven that the lifetime of drones with the BOLD algorithm is 15% higher than the drones with PSO-C algorithm

    Participatory peer research exploring the experience of learning during Covid-19 for Allied Health and Healthcare Science Students

    Get PDF
    INTRODUCTION: The teaching and learning experience of allied health and healthcare science students has altered because of the Covid-19 pandemic. Limited research has explored the experience on the future healthcare workforce using participatory research design. The aim of this study was to explore the impact of a global pandemic on the clinical and academic experiences of healthcare student using a co-production approach with student peer researchers. METHODS: A participatory research approach adopting online focus groups facilitated by students trained as peer researchers was adopted. First, second and final year students from occupational therapy, physiotherapy, podiatry, healthcare science, diagnostic radiography and imaging, radiotherapy and oncology, and speech and language therapy were recruited to six focus groups. Data generated through focus groups were analysed thematically using the DEPICT model to support a partnership approach. RESULTS: Twenty-three participants took part in six focus groups. The themes identified were: rapid changes to learning; living alongside Covid-19 and psychological impact. Students preferred blended learning approaches when available, as reduced peer interaction, studying and sleeping in the same space, and technology fatigue decreased motivation. CONCLUSION: Due to rapid changes in learning and the stress, anxiety and isolation created by the pandemic, managing study, personal life and placement resulted in a gap in confidence in clinical skills development for students. Students took their professional identity seriously, engaged in behaviours to reduce transmission of Covid-19 and employed a range of coping strategies to protect wellbeing. A challenge with the move to online delivery was the absence of informal peer learning and students indicated that moving forward they would value a hybrid approach to delivery. Higher Education should capitalise on innovative learning experiences developed during the pandemic however it is important to research the impact this has on student skill acquisition and learning experience

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    • 

    corecore